- ionization at extreme densities
- Single Crystal Diamond (SCD) sample

Target Fabrication of Colliding Planar Shock Targets Jacob Riddles¹, Mike MacDonald¹, Matt Arend¹, Rick Vargas¹, Chris Santos¹, Jean Jensep², Nancy Lau², Josh Ponce², Danilo Paras², Zac Rodriguez¹, Liam Sohngen¹, Joe Burke¹

¹Lawrence Livermore National Laboratory (LLNL), ²General Atomics (GA)

Dimpled Shield Process Development and Resolution

Gold shields made using the new process parameters meet specification

- Dimples are defined as in spec if they fall within a rho value of 0.25 to 0.35 Rho is equal to half of the center to center distance divided by the radius of the dimple
- Process development included parameter changes to temperature, pressure, and dwell time

All three targets performed as expected yielding exceptional physics data

The team will look to make improvements to this platform ahead of 3 shot allocations in FY25

Heavy use of gold dimpled shielding

Dimpled shielding is used in targets mitigate the 1 omega unconverted light risk CPS targets used gold to contain and isolate plasma and X-rays from interfering with measurement The current dimpling process was found to be flawed, necessitating a re-design of the process

LLNL-POST-867225

Lawrence Livermore National Laboratory